★ PVDFに帯電防止性能を付与できる添加剤の紹介

フッ素樹脂でポリ2フッ化ビニリデン(PVDF)のような 異種物質との親和性が極端に少ない樹脂でさえも、メチレン 基 (-CH₂-) さえ存在すれば帯電防止性能を確実に付与する ことが可能となる「分子化合物型帯電防止剤」で達成。

- 《 製品名 》:Biomicelle BN-105(ビオミセルBN-105)
- 《 実例 》265℃で帯電防止性能を付与した成形物の成功例

★ PVDFに1.0%と2.0%を添加した成形物の帯電防止性能を測定 ★

《測定結果》

(23°C、50%RH)

表面抵抗率	帯電減衰	摩擦による
(Ω/ □)	半減期 (sec)	紙片吸着特性
> 1 0 1 5	>60	吸着有り
1.3×10 ¹¹	1.05	紙片吸着 無し
5.0 × 10 ¹⁰	0.61	<i>''</i>
	(Ω/ □) >10 ¹⁵ 1.3×10 ¹¹	(Ω/ 口) 半減期 (sec) > 10 ¹⁵ > 60

★双方のPVDF試験体は表面抵抗率が絶縁体域を示す性能効果と同時に,帯電減衰率も 1sec~2sec 以内であり、製品に電荷を残さない数値を示している。

写真① 無添加品 帯電するポリ4フッ化エチレン (PTFE) 帯電する状態

写真② BN-105, 2.0%添加品 ポリ2フッ化ビニリデン (PVDF) 帯電しない状態 成形温度265℃で成功品

写真③ ①,②、を重ねた状態にすると 帯電防止性能は同時に付与される

株式会社ボロン研究所

Email: info@boron-labo.co.jp

Fluororesin, like polyvinylidene fluoride (PVDF)

(英訳)

Achieved with a "molecular compound type antistatic agent" that can reliably impart antistatic performance as long as the methylene group (-CH2-) is present, even for resins that have extremely low affinity for different substances.

- 《 Product name 》: $Biomicelle\ BN$ -105(ビオミセル BN-105)
- $\langle\!\langle$ Example $\rangle\!\rangle$: A successful example of a molded product imparting

antistatic performance at 265 ° C.

★ Measurement of antistatic performance of molded products ★ added 1.0% and 2.0% to PVDF

《 Measurement result 》:

(23 ° C., 50% RH)

		•		
	Measurement item	Product Surface	Charge damping	Friction Paper
製品		Resistivity	Half life (sec)	adsorption
		(Ω/□)		characteristics
Antistatic agent n	ot added	> 1 0 1 5	>60	Paper chucking
PVDF ,Injection n	nolded			
product	photo : ①			
BN-105, 1	1.O%additive	1.3×10 ¹¹	1.05	No paper chucking
BN-105, 2	2.O%additive	5.0×10 ¹⁰	0.61	"
	pHoto:②			

 \star Both PVDF test specimens have the performance effect that the surface resistivity shows the insulator range, and at the same time, the charge attenuation factor. It is within $1 \sec \sim 2 \sec$ and shows a value that does not leave a charge on the product,

Photo ①	Photo ②	Photo ③
Additive-free product Polyethylene tetrafluoride (PTFE) Charging state	BN-105, 2.0% When added products products Polyvinylidene fluoride (PVDF) Non-charging state	①, ②, are superimposed antistatic performance to be charged is concurrently imparted

Boron Laboratories, Inc.

Email: info@boron-labo.co.jp